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Feature Selection

 Also known as 

 dimensionality reduction

 subspace learning

 Two types: subset vs. new features
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Motivation

The objective of feature reduction is three-fold:

 Improving the accuracy of classification

 Providing a faster and more cost-effective 
predictors (CPU time)

 Providing a better understanding of the 
underlying process that generated the data
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Filtering methods

 Assume that you have both the feature Xi and the 
class attribute Y

 Associate a weight Wi with Xi

 Choose the features with largest weights

 Information Gain (Xi, Y)

 Mutual Information (Xi, Y)

 Chi-Square value of (Xi, Y)
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 Classifier is considered a black-box: Say KNN

 Loop

 Choose a subset of features

 Classify test data using classifier

 Obtain error rates

 Until error rate is low enough (< threshold)

 One needs to define:

 how to search the space of all possible variable 
subsets ?

 how to assess the prediction performance of a 
learner ?

Wrapper Methods
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The space of choices is large

n features, 2n possible feature subsets!

Kohavi-John, 1997
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Comparsion of filter and wrapper methods 
for feature selection:

 Wrapper method (+: optimized for learning 
algorithm)

 tied to a classification algorithm

 very time consuming

 Filtering method (+: fast)

 Tied to a statistical method  

 not directly related to learning objective



Data Mining: Concepts and Techniques 8

Feature Selection using Chi-Square

 Question: Are attributes 
A1 and A2 independent?

 If they are very 
dependent, we can 
remove either
A1 or A2

 If A1 is independent 
on a class attribute A2, 
we can 
remove A1 from our 
training data

Outlook Tempreature Humidity Windy Class

sunny hot high false N

sunny hot high true N

overcast hot high false P

rain mild high false P

rain cool normal false P

rain cool normal true N

overcast cool normal true P

sunny mild high false N

sunny cool normal false P

rain mild normal false P

sunny mild normal true P

overcast mild high true P

overcast hot normal false P

rain mild high true N
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Chi-Squared Test (cont.)

Question: Are attributes A1 and A2 independent?

These features are nominal valued (discrete)

Null Hypothesis: we expect independence

Outlook Temperature

Sunny High

Cloudy Low

Sunny High
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The Weather example: Observed Count

temperature


Outlook

High Low Outlook 
Subtotal

Sunny 2 0 2

Cloudy 0 1 1

Temperat
ure

Subtotal:

2 1 Total 
count in 
table =3

Outlook Temperat
ure

Sunny High

Cloudy Low

Sunny High
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The Weather example: Expected Count

temperature


Outlook

High Low Subtotal

Sunny 3*2/3*2/3
=4/3=1.3

3*2/3*1/3
=2/3=0.6

2 
(prob=2/3)

Cloudy 3*2/3*1/3
=0.6

3*1/3*1/3
=0.3

1, 
(prob=1/3)

Subtotal: 2 
(prob=2/3)

1 
(prob=1/3)

Total 
count in 
table =3

If attributes were independent, then the subtotals would be 
Like this (this table is also known as 

Outlook Temperat
ure

Sunny High

Cloudy Low

Sunny High
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Question: How different between 
observed and expected?

• X^2=(2-1.3)^2/1.3+(0-0.6)^2/0.6+(0-0.6)^2/0.6+(1-0.3)^2/0.3

• If Chi-squared value is very large, then A1 and A2 are not 
independent  that is, they are dependent!

• Thus, 

•X^2 value is large  Attributes A1 and A2 are dependent

•X^2 value is small  Attributes A1 and A2 are 

independent
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Chi-Squared Table: what does it mean?

 If calculated value is much greater than in the table, then you have reason 
to reject the independence assumption

 When your calculated chi-square value is greater than the chi2 value shown in the 0.05 
column (3.84) of this table  you are 95% certain that attributes are 
actually dependent!

 i.e. there is only a 5% probability that your calculated X2 value would occur by chance
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X1

X2

Principal Component Analysis 

(PCA)
See online tutorials such as 
http://www.cs.otago.ac.nz/cosc453/student_
tutorials/principal_components.pdf

Note: Y1 is 
the first 
eigen vector, 
Y2 is the 
second.  Y2 
ignorable.
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Key observation:
variance = largest!

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
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Principle Component Analysis (PCA)

Principle Component Analysis: project onto subspace 
with the most variance (unsupervised; doesn’t take y 
into account)



Data Mining: Concepts and Techniques 16

Principal Component Analysis: one 
attribute first

 Question: how much 
spread is in the data 
along the axis? (distance 
to the mean)

 Variance=Standard 
deviation^2

Temperature
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Now consider two dimensions

X=Temperature Y=Humidity
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Covariance: measures the
correlation between X and Y
• cov(X,Y)=0: independent
•Cov(X,Y)>0: move same dir
•Cov(X,Y)<0: move oppo dir
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More than two attributes: covariance 
matrix

 Contains covariance values between all 
possible dimensions (=attributes):

 Example for three attributes (x,y,z):
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Background: eigenvalues AND 
eigenvectors

 Eigenvectors e : C e = e

 How to calculate e and :

 Calculate det(C-I), yields a polynomial (degree n)

 Determine roots to det(C-I)=0, roots are eigenvalues 

 Check out any math book such as 

 Elementary Linear Algebra by Howard Anton, Publisher 
John,Wiley & Sons

 Or any math packages such as MATLAB
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An Example

X1 X2 X1' X2'

19 63 -5.1 9.25

39 74 14.9 20.25

30 87 5.9 33.25

30 23 5.9 -30.75

15 35 -9.1 -18.75

15 43 -9.1 -10.75

15 32 -9.1 -21.75

30 73 5.9 19.25
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Covariance Matrix

 C=

 Using MATLAB, we find out:

 Eigenvectors: 

 e1=(-0.98, 0.21), 1=51.8

 e2=(0.21, 0.98),  2=560.2

 Thus the second eigenvector is more important!

75 106

106 482
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If we only keep one dimension: e2

 We keep the dimension of 
e2=(0.21, 0.98)

 We can obtain the final 
data as
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Summary of PCA

 PCA is used  for reducing the number of 
numerical attributes

 The key is in data transformation

 Adjust data by mean

 Find eigenvectors for covariance matrix

 Transform data

 Note: only linear combination of data (weighted 
sum of original data)
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Linear Method: Linear Discriminant 
Analysis (LDA)

 LDA finds the projection that best separates the 
two classes

 Multiple discriminant analysis (MDA) extends 
LDA to multiple classes

Best projection 
direction for 
classification
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PCA vs. LDA

 PCA is unsupervised while LDA is supervised.

 PCA can extract r (rank of data) principles 
features while LDA can find (c-1) features.

 Both based on SVD technique.


