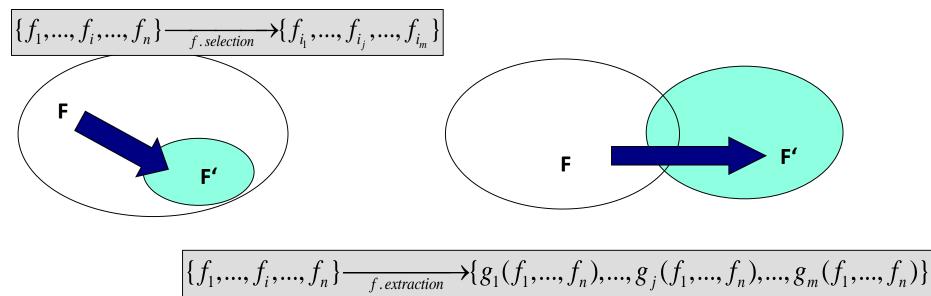
Chapter #6 Feature Selection Methods

Qiang Yang MSC IT 5210

Data Mining: Concepts and Techniques

Feature Selection

- Also known as
 - dimensionality reduction
 - subspace learning
 - Two types: subset vs. new features



Data mining. Concepts and rechniques

Motivation

The objective of feature reduction is three-fold:

- Improving the accuracy of classification
- Providing a faster and more cost-effective predictors (CPU time)
- Providing a better understanding of the underlying process that generated the data

3

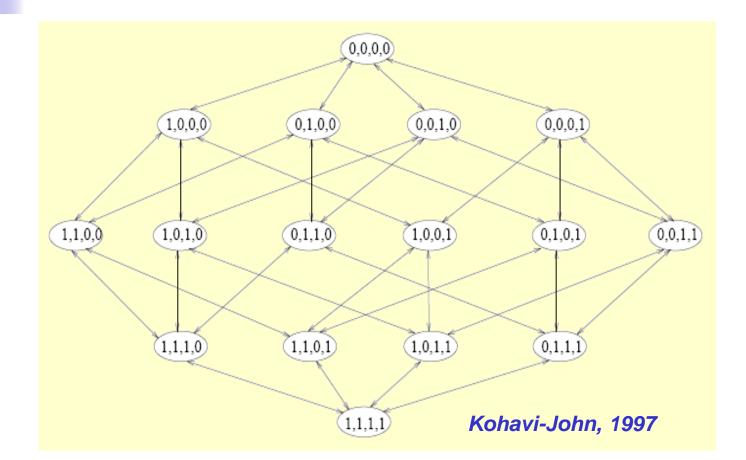
Filtering methods

- Assume that you have both the feature Xi and the class attribute Y
- Associate a weight Wi with Xi
- Choose the features with largest weights
 - Information Gain (Xi, Y)
 - Mutual Information (Xi, Y)
 - Chi-Square value of (Xi, Y)

Wrapper Methods

- Classifier is considered a black-box: Say KNN
- Loop
 - Choose a subset of features
 - Classify test data using classifier
 - Obtain error rates
 - Until error rate is low enough (< threshold)</p>
 - One needs to define:
 - how to search the space of all possible variable subsets ?
 - how to assess the prediction performance of a learner ?

The space of choices is large



n features, 2ⁿ possible feature subsets!

Data Mining: Concepts and Techniques

Comparsion of filter and wrapper methods for feature selection:

- Wrapper method (+: optimized for learning algorithm)
 - tied to a classification algorithm
 - very time consuming
- Filtering method (+: fast)
 - Tied to a statistical method
 - not directly related to learning objective

Feature Selection using Chi-Square

- Question: Are attributes A1 and A2 independent?
 - If they are very dependent, we can remove either A1 or A2
 - If A1 is independent on a class attribute A2, we can remove A1 from our training data

Outlook	Tempreature	Humidity	Windy	Class
sunny	hot	high	false	Ν
sunny	hot	high	true	Ν
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	Ν
overcast	cool	normal	true	Р
sunny	mild	high	false	Ν
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	Ν

Chi-Squared Test (cont.)

Question: Are attributes A1 and A2 independent?

These features are nominal valued (discrete)

Null Hypothesis: we expect independence

Outlook	Temperature	
Sunny	High	
Cloudy	Low	
Sunny	High	

The Weather example: Observed Count

temperature →	High	Low	Outlook Subtotal
Outlook			
Sunny	2	0	2
Cloudy	0	1	1
Temperat ure Subtotal:	2	1	Total count in table =3

<u>Outlook</u>	Temperat ure
Sunny	High
Cloudy	Low
Sunny	High

The Weather example: Expected Count

If attributes were *independent*, then the subtotals would be Like this (this table is also known as

temperature \rightarrow	High	Low	Subtotal
Outlook			
Sunny	3*2/3*2/3 =4/3=1.3	3*2/3*1/3 =2/3=0.6	2 (prob=2/3)
Cloudy	3*2/3*1/3 =0.6	3*1/3*1/3 =0.3	1, (prob=1/3)
Subtotal:	2 (prob=2/3)	1 (prob=1/3)	Total count in table =3

<u>Outlook</u>	<u>Temperat</u> <u>ure</u>
Sunny	High
Cloudy	Low
Sunny	High

Question: How different between observed and expected?

The chi-squared formula is:

Chi-squared (X²) =
$$\frac{(o_1 - e_1)^2}{e_1}$$
 + $\frac{(o_2 - e_2)^2}{e_2}$ + + $\frac{(o_n - e_n)^2}{e_n}$

• X^2=(2-1.3)^2/1.3+(0-0.6)^2/0.6+(0-0.6)^2/0.6+(1-0.3)^2/0.3

• If Chi-squared value is very large, then A1 and A2 are not independent \rightarrow that is, they are dependent!

• Thus,

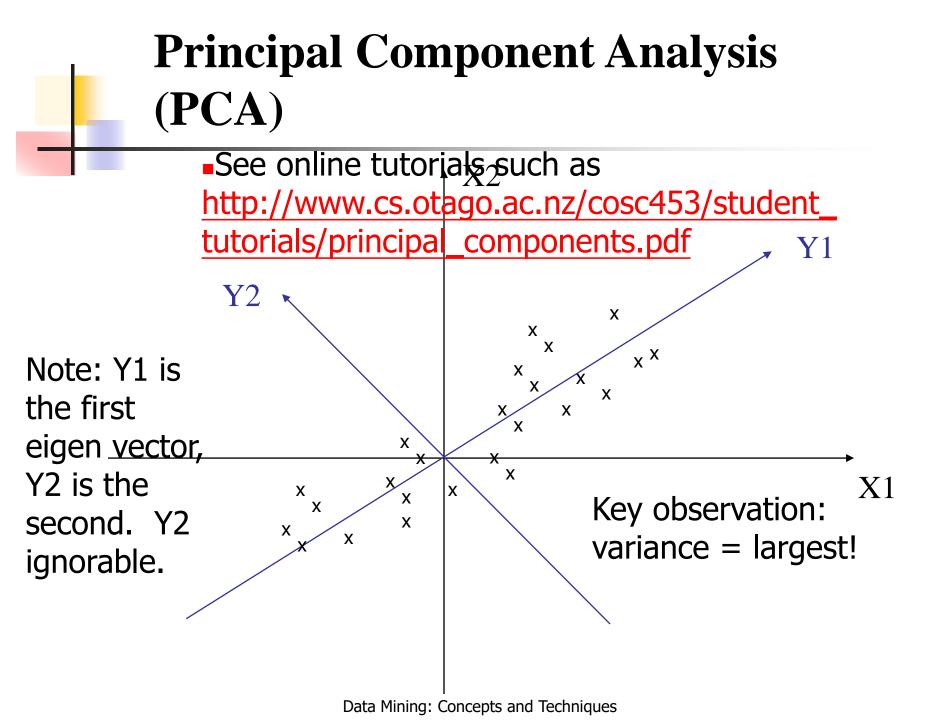
•X^2 value is large \rightarrow Attributes A1 and A2 are dependent

•X^2 value is small \rightarrow Attributes A1 and A2 are independent

Chi-Squared Table: what does it mean?

- If calculated value is much greater than in the table, then you have reason to reject the independence assumption
 - When your calculated chi-square value is greater than the chi² value shown in the 0.05 column (3.84) of this table → you are 95% certain that attributes are actually dependent!
 - i.e. there is only a 5% probability that your calculated X² value would occur by chance

Degrees of Freedom	Probability, p				
	0.99 0.95 0.05 0.01 0.001				0.001
1	0.000	0.004	3.84	6.64	10.83
2	0.020	0.103	5.99	9.21	13.82



Principle Component Analysis (PCA) Factor 2 Variable 2 Factor 1 Variable 1 1) (— — Factor 1

Principle Component Analysis: project onto subspace with the most variance (unsupervised; doesn't take y into account)

Principal Component Analysis: one attribute first Temperature 42 40 24 Question: how much 30 spread is in the data 15 along the axis? (distance 18 to the mean) 15 Variance=Standard 30 deviation^2 15 $s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{(n-1)}$ 30 35 30 40

30

Now consider two dimensions

Covariance: measures the correlation between X and Y • cov(X,Y)=0: independent •Cov(X,Y)>0: move same dir •Cov(X,Y)<0: move oppo dir

$$\operatorname{cov}(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

X=Temperature	Y=Humidity
40	90
40	90
40	90
30	90
15	70
15	70
15	70
30	90
15	70
30	70
30	70
30	90
40	70
30	90

Data Mining: Concepts and Techniques

More than two attributes: covariance matrix

Contains covariance values between all possible dimensions (=attributes):

$$C^{nxn} = (c_{ij} \mid c_{ij} = \text{cov}(Dim_i, Dim_j))$$

Example for three attributes (x,y,z):

$$C = \begin{pmatrix} \operatorname{cov}(x, x) & \operatorname{cov}(x, y) & \operatorname{cov}(x, z) \\ \operatorname{cov}(y, x) & \operatorname{cov}(y, y) & \operatorname{cov}(y, z) \\ \operatorname{cov}(z, x) & \operatorname{cov}(z, y) & \operatorname{cov}(z, z) \end{pmatrix}$$

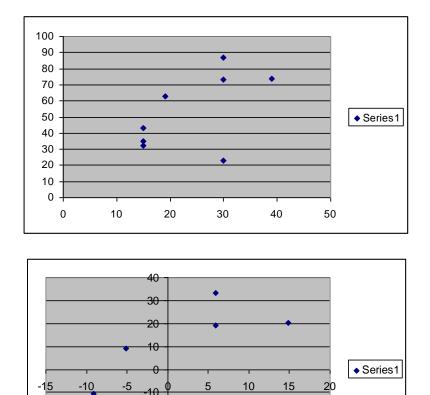
Background: eigenvalues AND eigenvectors

- Eigenvectors \mathbf{e} : $C\mathbf{e} = \lambda \mathbf{e}$
- How to calculate **e** and λ :
 - Calculate $det(C-\lambda I)$, yields a polynomial (degree n)
 - Determine roots to $det(C-\lambda I)=0$, roots are eigenvalues λ
- Check out any math book such as
 - Elementary Linear Algebra by Howard Anton, Publisher John, Wiley & Sons
 - Or any math packages such as MATLAB

An Example

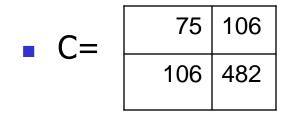
Mean1=24.1 Mean2=53.8

X1	X2	X1'	X2'
19	63	-5.1	9.25
39	74	14.9	20.25
30	87	5.9	33.25
30	23	5.9	-30.75
15	35	-9.1	-18.75
15	43	-9.1	-10.75
15	32	-9.1	-21.75
30	73	5.9	19.25



-20 -30 -40

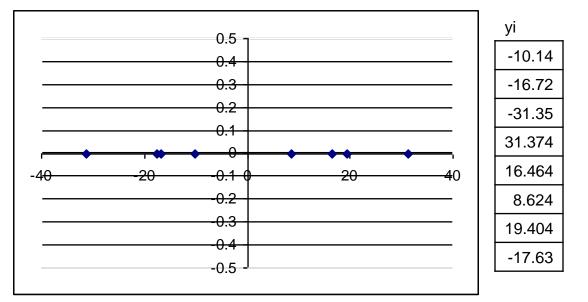
Covariance Matrix



- Using MATLAB, we find out:
 - Eigenvectors:
 - e1=(-0.98, 0.21), λ1=51.8
 - e2=(0.21, 0.98), λ2=560.2
 - Thus the second eigenvector is more important!

If we only keep one dimension: e2

- We keep the dimension of e2=(0.21, 0.98)
- We can obtain the final data as



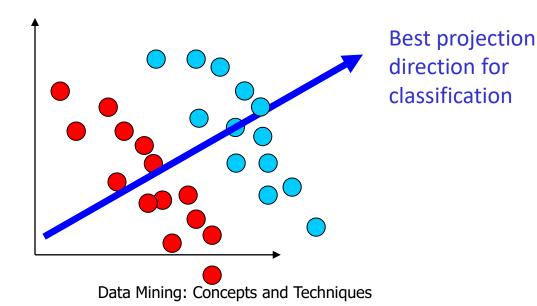
$$y_i = (x_{i1} \quad x_{i2}) \begin{pmatrix} 0.21 \\ 0.98 \end{pmatrix} = 0.21 * x_{i1} + 0.98 * x_{i2}$$

Summary of PCA

- PCA is used for reducing the number of numerical attributes
- The key is in data transformation
 - Adjust data by mean
 - Find eigenvectors for covariance matrix
 - Transform data
- Note: only linear combination of data (weighted sum of original data)

Linear Method: Linear Discriminant Analysis (LDA)

- LDA finds the projection that best separates the two classes
- Multiple discriminant analysis (MDA) extends LDA to multiple classes



24

PCA vs. LDA

- PCA is unsupervised while LDA is supervised.
- PCA can extract r (rank of data) principles features while LDA can find (c-1) features.
- Both based on SVD technique.